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We study how one-particle correlations transfer to manifest as two-particle correlations in the context of
parametric down-conversion (PDC), a process in which a pump photon is annihilated to produce two entangled
photons. We work in the polarization degree of freedom and show that for any two-qubit generation process
that is both trace-preserving and entropy-nondecreasing, the concurrence C(ρ) of the generated two-qubit state
ρ follows an intrinsic upper bound with C(ρ) � (1 + P )/2, where P is the degree of polarization of the pump
photon. We also find that for the class of two-qubit states that is restricted to have only two nonzero diagonal
elements such that the effective dimensionality of the two-qubit state is the same as the dimensionality of the
pump polarization state, the upper bound on concurrence is the degree of polarization itself, that is, C(ρ) � P .
Our work shows that the maximum manifestation of two-particle correlations as entanglement is dictated by
one-particle correlations. The formalism developed in this work can be extended to include multiparticle systems
and can thus have important implications towards deducing the upper bounds on multiparticle entanglement, for
which no universally accepted measure exists.
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I. INTRODUCTION

The wave-particle duality, that is, the simultaneous ex-
istence of both particle and wave properties, is the most
distinguishing feature of a quantum system. A quantum system
is characterized in terms of physical quantities such as energy,
momentum, etc., as well as in terms of correlations, the degree
of which can be measured in terms of the contrast with which
a system produces interference patterns [1–3]. In the context
of quantum systems consisting of more than one particle, the
wave-particle duality can manifest as entanglement [4]. Quan-
tum entanglement refers to intrinsic multiparticle correlations
in a system and is quite often referred to as the quintessential
feature of quantum systems [5]. There are many processes in
which a quantum system gets annihilated to produce a new
quantum system consisting of either equal or more number
of particles. An example is the nonlinear optical process of
parametric down-conversion (PDC), in which an input pump
photon gets annihilated to produce two entangled photons
called the signal and idler photons [6]. Another example is the
four-wave mixing process, in which two input pump photons
get annihilated to produce two new photons [7]. In such
processes, it is known that certain physical quantities remain
conserved [6,8]. For example, in parametric down-conversion,
the energy of the pump photon remains equal to the sum of the
energies of the down-converted signal and idler photons [6].
However, it is not very well understood as to how in such
processes the intrinsic correlations in the annihilated quantum
system get transferred to the generated new quantum system.

One of the main difficulties in addressing questions related
to correlation transfer is the lack of a mathematical framework
for quantifying correlations in multidimensional systems in
terms of a single scalar quantity, although more recently
there have been a lot of research efforts with the aim of
quantifying coherence [9–13]. For a one-particle quantum
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system with a two-dimensional Hilbert space, the correlation
in the system can be completely specified. For example,
polarization is a degree of freedom that provides a two-
dimensional basis and the correlations in an arbitrary state
of a one-photon system can be uniquely quantified in terms
of the degree of polarization [1,14]. Two-photon systems have
a four-dimensional Hilbert space in the polarization degree
of freedom and are described by two-qubit states [15]. In the
last several years much effort has gone into quantifying the
entanglement of the two-qubit states [16–24], and among
the available entanglement quantifiers, Wootters’s concur-
rence [21,22] is the most widely used one. However, when the
Hilbert-space dimensionality of individual quantum particles
is more than two, there is no prescription for quantifying the
correlations in the entire system; one can at best quantify
correlations in a two-dimensional subspace [25]. So, with the
current mathematical framework, as far as quantifying intrinsic
correlations in a quantum system in terms of a single quantity
is concerned, it can only be done when the Hilbert space is
two-dimensional. The polarization degree of freedom provides
such a two-dimensional space and the intrinsic correlations can
therefore be completely quantified in this degree of freedom.

In the context of signal-idler photons produced by PDC, the
two-qubit polarization-entangled states have been extensively
studied [15,26,27] and are now seen to hold a lot of promise for
practical quantum-information protocols [28,29]. However,
to the best of our knowledge, the correlations in the down-
converted polarization-entangled states have not been studied
from the perspective of how these correlations are dictated
by the polarization correlations in the pump field. In degrees
of freedom other than polarization, some aspects of how one-
photon pump correlations transfer to two-photon signal-idler
correlations have previously been investigated [30–34]. In
particular, Ref. [31] studied correlation transfer in PDC in
the spatial degree of freedom. Although spatial degree of
freedom provides an infinite dimensional basis, correlations
in Ref. [31] were quantified in restricted two-dimensional
subspaces only. More specifically, the spatial correlations in
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the pump field were quantified in terms of a spatial two-point
correlation function; for quantifying spatial correlations of
the signal and idler fields, spatial two-qubit states with only
two nonzero diagonal elements were considered. It was
then shown that the maximum achievable concurrence of
spatial two-qubit states is bounded by the degree of spatial
correlations of the pump field. In this article, we study
correlation transfer from one-photon to two-photon systems,
not in any restricted subspace, but in the complete space of
the polarization degree of freedom. We quantify intrinsic
one-photon correlations in terms of the degree of polarization
and the two-photon correlations in terms of concurrence.

The paper is organized as follows. In Sec. II, we present
our derivation of the upper bound on two-qubit polarization
entanglement. We first present the most general bound on
two-qubit polarization entangled states and then discuss the
bound for two-qubit states that have only two nonzero diagonal
elements. In Sec. III, we discuss an example experimental
setup in which a wide variety of two-qubit states can be
produced. By numerically varying different tunable parameters
of the setup, we simulate a large number of two-qubit states,
calculate the corresponding concurrences, and illustrate how
the bounds derived in Sec. II are obeyed. Section IV presents
our conclusions.

II. UPPER BOUND ON TWO-QUBIT POLARIZATION
ENTANGLEMENT

A. The degree of polarization of the pump field

We begin by noting that the state of a normalized quasi-
monochromatic pump field may be described by a 2 × 2
density matrix [1] given by

J =
[
〈E

H
E∗

H
〉 〈E

H
E∗

V
〉

〈E∗
H
E

V
〉 〈E

V
E∗

V
〉

]
, (1)

which is referred to as the “polarization matrix.” The complex
random variables E

H
and E

V
denote the horizontal and vertical

components of the electric field, respectively, and 〈· · · 〉
denotes an ensemble average. By virtue of a general property
of 2 × 2 density matrices, J has a decomposition of the form,

J = P |ψpol〉〈ψpol| + (1 − P ) 1̄, (2)

where |ψpol〉 is a pure state representing a completely polarized
field, and 1̄ denotes the normalized 2 × 2 identity matrix rep-
resenting a completely unpolarized field [1]. This means that
any arbitrary field can be treated as a unique weighted mixture
of a completely polarized part and a completely unpolarized
part. The fraction P corresponding to the completely polarized
part is called the degree of polarization and is a basis-invariant
measure of polarization correlations in the field. If we denote
the eigenvalues of J as ε1 and ε2, then it can be shown that
P = |ε1 − ε2| [1]. Furthermore, the eigenvalues are connected
to P as ε1 = (1 + P )/2 and ε2 = (1 − P )/2.

B. The general upper bound

We now investigate the PDC-based generation of po-
larization entangled two-qubit signal-idler states ρ from a
quasimonochromatic pump field J (see Fig. 1). The nonlinear

FIG. 1. Modeling the generation of two-qubit states ρ from σ

through a doubly stochastic process.

optical process of PDC is a very low-efficiency process [7].
Most of the pump photons do not get down-converted and just
pass through the nonlinear medium. Only a very few pump
photons do get down-converted, and in our description, only
these photons constitute the ensemble containing the pump
photons. We further assume that the probabilities of the higher-
order down-conversion processes are negligibly small so that
we do not have in our description the down-converted state
containing more than two photons. With these assumptions,
we represent the state of the down-converted signal and
idler photons by a 4 × 4, two-qubit density matrix in the
polarization basis {|H 〉s |H 〉i ,|H 〉s |V 〉i ,|V 〉s |H 〉i ,|V 〉s |V 〉i}.
In what follows, we will be applying some results from the
theory of majorization [35] in order to study the propagation
of correlations from the 2 × 2 pump density matrix J to the
4 × 4 two-qubit density matrix ρ. This requires us to equalize
the dimensionalities of the pump and the two-qubit states. We
therefore represent the pump field by a 4 × 4 matrix σ , where

σ ≡
(

1 0
0 0

)
⊗ J. (3)

We denote the eigenvalues of σ in nonascending order as
(ε1,ε2,ε3,ε4) ≡ ((1 + P )/2,(1 − P )/2,0,0) and the eigenval-
ues of ρ in nonascending order as (λ1,λ2,λ3,λ4).

Let us represent the two-qubit generation process σ → ρ by
a completely positive map E (see Fig. 1) such that ρ = E(σ ) =∑

i MiσM
†
i , where Mi’s are the Sudarshan-Kraus operators for

the process [36–39]. We restrict our analysis only to maps that
satisfy the following two conditions for all σ : (i) No part of the
system can be discarded, that is, there must be no postselection.
This means that the map must be trace-preserving, which leads
to the condition that

∑
i M

†
i Mi = 1; (ii) coherence may be

lost to, but not gained from degrees of freedom external to
the system. In other words, the von Neumann entropy cannot
decrease. This condition holds if and only if the map is unital,
that is,

∑
i MiM

†
i = 1. The above two conditions together

imply that the process σ → ρ is doubly stochastic [40].
The characteristic implication of double stochasticity is that
the two-qubit state is majorized by the pump state, that is,
ρ ≺ σ . This means that the eigenvalues of ρ and σ satisfy the
following relations:

λ1 � ε1, (4a)

λ1 + λ2 � ε1 + ε2, (4b)

λ1 + λ2 + λ3 � ε1 + ε2 + ε3, (4c)

λ1 + λ2 + λ3 + λ4 = ε1 + ε2 + ε3 + ε4. (4d)
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We must note that condition (i) may seem not satisfied in
some of the experimental schemes for producing polarization
entangled two-qubit states. For example, in the scheme for
producing a polarization Bell state using type-II phase match-
ing [15], only one of the polarization components of the pump
photon is allowed to engage in the down-conversion process;
the other polarization component, even if present, simply gets
discarded away. Nevertheless, our formalism is valid even for
such two-qubit generation schemes. In such schemes, the state
σ represents that part of the pump field which undergoes the
down-conversion process so that condition (i) is satisfied.

Now, for a general realization of the process σ → ρ, the
generated density matrix ρ can be thought of as arising from
a process N , that can have a nonunitary part, followed by
a unitary-only process U , as depicted in Fig. 1. This means
that we have σ → χ ≡ N (σ ) → ρ ≡ U(χ ). The process N
generates the two-qubit state χ with eigenvalues {λ1,λ2,λ3,λ4}
which are different from the eigenvalues {ε1,ε2,ε3,ε4} of σ ,
except when N consists of unitary-only transformations, in
which case the eigenvalues of χ remain the same as that of σ .
The unitary part U transforms the two-qubit state χ to the final
two-qubit state ρ. This action does not change the eigenvalues
but can change the concurrence of the two-qubit state. The
majorization relations of Eq. (4) dictate how the two sets of
eigenvalues are related and thus quantify the effects due to
N . We quantify the effects due to U by using the result from
Refs. [20,41,42] for the maximum concurrence achievable by
a two-qubit state under unitary transformations. According
to this result, for a two-qubit state ρ with eigenvalues in
nonascending order denoted as λ1,λ2,λ3,λ4, the concurrence
C(ρ) obeys the inequality:

C(ρ) � max{0,λ1 − λ3 − 2
√

λ2λ4}; (5)

the bound is saturable in the sense that there always exists a
unitary transformation U(χ ) = ρ for which the equality holds
true [42]. Now, from Eq. (5), we clearly have C(ρ) � λ1.
And, from the majorization relation of Eq. (4a), we find
that λ1 � ε1 = (1 + P )/2. Therefore, for a general doubly
stochastic process E , we arrive at the inequality:

C(ρ) � 1 + P

2
. (6)

We stress that this bound is tight, in the sense that there always
exists a pair of N and U for which the equality in the above
equation holds true. In fact, the saturation of Eq. (6) is achieved
when N consists of unitary-only process and when U is such
that it yields the maximum concurrence for ρ as allowed by
Eq. (5). This can be verified, first, by noting that when N
is unitary the process χ = N (σ ) preserves the eigenvalues
to yield (λ1,λ2,λ3,λ4) = ((1 + P )/2,(1 − P )/2,0,0), and sec-
ond, by substituting these eigenvalues in Eq. (5) which then
yields (1 + P )/2 as the maximum achievable concurrence.
Equation (6) is the central result of this article which clearly
states that the intrinsic polarization correlations of the pump
field in PDC predetermine the maximum entanglement that
can be achieved by the generated two-qubit signal-idler states.
We note that while Eq. (6) has been derived keeping in
mind the physical context of parametric down-conversion, the
derivation does not make any specific reference to the PDC
process or to any explicit details of the two-qubit generation

scheme. As a result, Eq. (6) is also applicable to processes
other than PDC that would produce a two-qubit state from a
single source qubit state via a doubly stochastic process.

C. The restricted bound for “2D states”

We now recall that our present work is directly motivated
by previous studies in the spatial degree of freedom for two-
qubit states with only two nonzero diagonal entries in the
computational basis [31]. Therefore, we next consider this
special class of two-qubit states in the polarization degree
of freedom. We refer to such states as “2D states” in this
article and represent the corresponding density matrix as ρ(2D).
Since such states can only have two nonzero eigenvalues, the
majorization relations of Eq. (4) reduce to λ1 � ε1 and λ1 +
λ2 = ε1 + ε2 = 1. Owing to its 2 × 2 structure, the state ρ(2D)

has a decomposition of the form [1],

ρ(2D) = P̃ |ψ (2D)〉〈ψ (2D)| + (1 − P̃ )1̄(2D)
, (7)

where |ψ (2D)〉 is a pure state and 1̄
(2D) is a normalized 2 × 2

identity matrix. As in Eq. (2), the pure state weightage P̃ can
be shown to be related to the eigenvalues as P̃ = λ1 − λ2. It is
known that the concurrence is a convex function on the space
of density matrices [22], that is, C(

∑
i piρi) �

∑
i piC(ρi),

where 0 � pi � 1 and
∑

i pi = 1. Applying this property to
Eq. (7) along with the fact that C(1̄(2D)) = 0, we obtain that
the concurrence C(ρ(2D)) of a 2D state satisfies C(ρ(2D)) � P̃ .
Now since P̃ = λ1 − λ2 = 2λ1 − 1, and λ1 � ε1, we get
P̃ � 2ε1 − 1 = ε1 − ε2 = P , or P̃ � P . We therefore arrive
at the inequality,

C(ρ(2D)) � P. (8)

Thus, for 2D states the upper bound on concurrence is the
degree of polarization itself. This particular result is in exact
analogy with the result shown previously for 2D states in
the spatial degree of freedom that the maximum achievable
concurrence is bounded by the degree of spatial correlations
of the pump field itself [31].

Our entire analysis leading up to Eqs. (6) and (8) describes
the transfer of one-particle correlations, as quantified by P ,
to two-particle correlations and their eventual manifestation
as entanglement, as quantified by concurrence. For 2D states,
which have a restricted Hilbert space available to them, the
maximum concurrence that can get manifested is P . Thus,
restricting the Hilbert space appears to restrict the degree to
which pump correlations can manifest as the entanglement
of the generated two-qubit state. However, when there are
no restrictions on the available Hilbert space, the maximum
concurrence that can get manifested is (1 + P )/2. This leads
to the somewhat nonintuitive consequence that even an unpo-
larized pump field (P = 0) can produce two-qubit states with
nonzero concurrence [up to C(ρ) = 0.5]. This is attributed to
the fact that the one-particle correlations of the pump field are
allowed to manifest in the full unrestricted Hilbert space of
the two-particle state of the signal-idler photons. We note that
our general result as derived in Eq. (6) remains applicable
even in situations where the entanglement in a generated
two-qubit state is transferred to another two-qubit state [43–46]
or where a two-qubit state is made to go through a turbulent
atmosphere [47]. As long as the trace-preserving and entropy
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nondecreasing conditions are satisfied the upper bound on
entanglement in such transfers still remain dictated by Eq. (6).

III. AN ILLUSTRATIVE EXPERIMENTAL SCHEME

We now illustrate the bounds derived in this article in an
example experimental scheme. The scheme shown in Fig. 2(a)
can produce a wide range of two-qubit states in a doubly
stochastic manner. A pump field with the degree of polarization
P is split into two arms by a nonpolarizing beam splitter (BS)
with splitting ratio t : 1 − t . We represent the horizontal and
vertical polarization components of the field hitting the PDC
crystals in arm (1) as EH1 and EV 1, respectively. The phase
retarder (PR1) introduces a phase difference α1 between EH1

and EV 1. The rotation plate (RP1) rotates the polarization

vector by angle θ1. The corresponding quantities in arm
(2) have similar representations. The stochastic variable γ

introduces a decoherence between the pump fields in the two
arms. Its action is described as 〈eiγ 〉 = μeiγ0 , where 〈· · · 〉
represents the ensemble average, μ is the degree of coherence,
and γ0 is the mean value of γ [1]. The entangled photons
in each arm are produced using type-I PDC in a two-crystal
geometry [26]. The purpose of the half-wave plate (HP) is to
convert the two-photon state vectors |H 〉s |H 〉i and |V 〉s |V 〉i ,
into |V 〉s |H 〉i and |H 〉s |V 〉i , respectively. Therefore, a typical
realization |ψγ 〉 of the two-qubit state in the ensemble detected
at Ds and Di can be represented as |ψγ 〉 = EV 1|H 〉s |H 〉i +
EH1|V 〉s |V 〉i + eiγ (EV 2|H 〉s |V 〉i + EH2|V 〉s |H 〉i). The two-
qubit density matrix is then ρ = 〈|ψγ 〉〈ψγ |〉 =

⎡
⎢⎢⎢⎢⎣

〈EV 1E
∗
V 1〉 〈EV 1E

∗
V 2e

−iγ 〉 〈EV 1E
∗
H2e

−iγ 〉 〈EV 1E
∗
H1〉

〈EV 2E
∗
V 1e

iγ 〉 〈EV 2E
∗
V 2〉 〈EV 2E

∗
H2〉 〈EV 2E

∗
H1e

iγ 〉
〈EH2E

∗
V 1e

iγ 〉 〈EH2E
∗
V 2〉 〈EH2E

∗
H2〉 〈EH2E

∗
H1e

iγ 〉
〈EH1E

∗
V 1〉 〈EH1E

∗
V 2e

−iγ 〉 〈EH1E
∗
H2e

−iγ 〉 〈EH1E
∗
H1〉

⎤
⎥⎥⎥⎥⎦.

For calculating the matrix elements of ρ, we represent the
polarization vector of the pump field before the BS as
(EH,EV )T and thus write EH1 and EV 1 as[

EH1

EV 1

]
=η1

[
cos θ1 sin θ1

− sin θ1 cos θ1

][
1 0
0 eiα1

][
EH

EV

]
, (9)

where η1 = √
t , and the two matrices represent the trans-

formations by PR1 and RP1. EH2 and EV 2 are calculated
in a similar manner, with the corresponding quantity η2 =√

1 − t eiγ . Without the loss of generality, we assume
〈E∗

HEH 〉 = 〈E∗
V EV 〉 = 1/2 and 〈E∗

HEV 〉 = P/2, and calcu-
late the matrix elements to be

〈EV 1(2)E
∗
V 1(2)〉 = |η1(2)|2(1 − P cos α1(2) sin 2θ1(2))/2,

〈EH1(2)E
∗
H1(2)〉 = |η1(2)|2(1 + P cos α1(2) sin 2θ1(2))/2,

〈EV 1(2)E
∗
H1(2)〉 = |η1(2)|2 P (cos α1(2)cos 2θ1(2) + i sin α1(2))/2,

〈EV 1E
∗
V 2e

−iγ 〉 = μ|η1η2|(sin θ1 sin θ2 + cos θ1 cos θ2e
i(α1−α2)

−P cos θ1 sin θ2e
iα1

−P sin θ1 cos θ2e
−iα2 )e−iγ0/2,

〈EV 1E
∗
H2e

−iγ 〉 = μ|η1η2|(− sin θ1 cos θ2

+ cos θ1 sin θ2e
i(α1−α2) + P cos θ1 cos θ2e

iα1

−P sin θ1 sin θ2e
−iα2 )e−iγ0/2,

〈EV 2E
∗
H1e

iγ 〉 = μ|η1η2|(− cos θ1 sin θ2

+ sin θ1 cos θ2e
−i(α1−α2) − P sin θ1 sin θ2e

−iα1

+P cos θ1 cos θ2e
iα2 )eiγ0/2,

〈EH2E
∗
H1e

iγ 〉 = μ|η1η2|(cos θ1 cos θ2 + sin θ1 sin θ2e
−i(α1−α2)

+P sin θ1 cos θ2e
−iα1

+P cos θ1 sin θ2e
iα2 )eiγ0/2.

FIG. 2. (a) An example of an experimental scheme for producing
a wide range of two-qubit states. BS, beam splitter; PR, phase retarder;
RP, rotation plate; HP, half-wave plate. Ds and Di are photon detectors
in a coincidence-counting setup. (b) and (c) are the scatter plots of
concurrences of states numerically generated by randomly varying all
the tunable parameters. (d) and (e) are the scatter plots of concurrence
of 2D states, numerically generated by keeping t = 1 and varying all
the remaining tunable parameters.
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Here, t,α1,α2,θ1,θ2,μ, and γ0 are the tunable parameters. We
numerically vary these parameters with a uniform random
sampling and simulate a large number of two-qubit states.
Figures 2(b) and 2(c) are the scatter plots of concurrences
of 5 × 103 and 5 × 106 two-qubit states, respectively, nu-
merically generated by varying all the tunable parameters.
Figures 2(d) and 2(e) are the scatter plots of concurrence
of 5 × 103 and 5 × 106 2D states, respectively, numerically
generated by keeping t = 1 and varying all the remaining
tunable parameters. The solid black lines are the general upper
bound C(ρ) = (1 + P )/2 and the dashed black lines are the
upper bound C(ρ) = P for 2D states. The unfilled gaps in
the scatter plots can be filled in either by sampling more data
points or by adopting a different sampling strategy. To this end,
we note that one possible setting for which the general upper
bound C(ρ) = (1 + P )/2 can be achieved for any value of P is
t = 0.5, θ1 = −π/4, θ2 = 0, α1 = π/2, α2 = π, μ = 1, and
γ0 = 0. Thus, even an unpolarized pump field (P = 0) can
be made to produce two-qubit signal-idler states with nonzero
entanglement (up to C(ρ) = 0.5) by a suitable choice of the
tunable parameters. This is due to the fact that the setup is
capable of producing a wide variety of two-qubit states, which
in general, reside in the full unrestricted four-dimensional
Hilbert space.

IV. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have investigated how one-particle corre-
lations transfer to manifest as two-particle correlations in the
physical context of PDC. We have shown that if the generation
process is trace preserving and entropy nondecreasing, the
concurrence C(ρ) of the generated two-qubit state ρ follows
an intrinsic upper bound with C(ρ) � (1 + P )/2, where P

is the degree of polarization of the pump photon. For the
special class of two-qubit states ρ(2D) that is restricted to
have only two nonzero diagonal elements, the upper bound
on concurrence is the degree of polarization itself, that is,

C(ρ(2D)) � P . The surplus of (1 + P )/2 − P = (1 − P )/2 in
the maximum achievable concurrence for arbitrary two-qubit
states can be attributed to the availability of the entire 4 × 4
computational space, as opposed to 2D states which only have
a 2 × 2 computational block available to them.

We note that the polarization correlations of a pump
field do not impose serious limitations on the degree of
entanglement of the signal and idler photons, insofar as its
practical achievability in realistic experiments is concerned,
since most available laboratory sources can be made to have
nearly perfect degree of polarization. The main motivation
behind this study is from the fundamental perspective of
understanding how one-particle correlations transfer to man-
ifest as two-particle correlations. The results derived in this
paper can have two important implications. The first one is
towards exploring whether or not correlations, too, follow a
quantifiable conservation principle just as physical observables
such as energy and momentum do. The second one could be
towards deducing the upper bound on the correlations in a
generated high-dimensional quantum system, purely from the
knowledge of the correlations in the source. In light of the
recent experiment on generation of three-photon entangled
states from a single source photon [48], this formalism may
prove useful in determining upper bounds on the entanglement
of such multipartite systems, for which no well-accepted
measure exists. In this context, we believe that this approach
based on intrinsic source correlations could also complement
the existing information-theoretic approaches [16–24] towards
quantifying entanglement.
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